A necessary and sufficient condition for Ricci shrinkers to have positive AVR
نویسندگان
چکیده
منابع مشابه
Solving Fully Fuzzy Linear System with the Necessary and Sufficient Condition to have a Positive Solution
Abstract: This paper proposes new matrix methods for solving positive solutions for a positive Fully Fuzzy Linear System (FFLS). All coefficients on the right hand side are collected in one block matrix, while the entries on the left hand side are collected in one vector. Therefore, the solution can be gained with a non-fuzzy common step. The necessary theorems are derived to obtain a necessary...
متن کاملA Necessary and Sufficient Condition for Transcendency
As has been known for many years (see, e.g., K. Mahler, /. Reine Angew. Math., v. 166, 1932, pp. 118-150), a real or complex number f is transcendental if and only if the following condition is satisfied. To every positive number co there exists a positive integer n and an infinite sequence of distinct polynomials {p,(z)} = {pr + pr z + • • • + p z } at most of 0 1 n degree n with integral coef...
متن کاملA Necessary and Sufficient Condition for Peace∗
This paper examines the possibility for two contestants to agree on a peace settlement thereby avoiding a contest, in which each would exert a costly effort given the posterior distributions inferred from the negotiation. I find a necessary and sufficient condition of the prior distributions for there to exist a negotiation mechanism that admits a peace-ensuring perfect Bayesian equilibrium. Th...
متن کاملNecessary and Sufficient Condition for Gaussian Feedback Capacity to Increase
The problem considered in this paper is whether the capacity of a discrete time Gaussian channel is increased by feedback or not. It is well known that the capacity of a white Gaussian channel under the average power constraint is not changed by feedback. In the previous paper [7] we gave some sufficient conditions under which the capacity of a non-white Gaussian channel is increased by feedbac...
متن کاملA Necessary and Sufficient Condition for Existence of a Positive Perron Vector
In 1907, Oskar Perron showed that a positive square matrix has a unique largest positive eigenvalue with a positive eigenvector. This result was extended to irreducible nonnegative matrices by Geog Frobenius in 1912, and to irreducible nonnegative tensors and weakly irreducible nonnegative tensors recently. This result is a fundamental result in matrix theory and has found wide applications in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2012
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-2011-11173-0